Skip to main content

MOFs for the energy transition - references

Published by , Senior Editor
Hydrocarbon Engineering,


Below is the list of references associated with the article entitled 'MOFs for the energy transition', which featured in the September 2022 issue of Hydrocarbon Engineering.

This article was written by Dr. M. Asunción Molina Esquinas, Instituto de Catálisis y Petroleoquímica, and Dr. Meritxell Vila, MERYT Catalysts & Innovation.

References

  1. Moosavi, S. M.; Nandy, A.; Jablonka, K. M.; Ongari, D.; Janet, J. P.; Boyd, P. G.; Lee, Y.; Smit, B.; Kulik, H. J. Understanding the Diversity of the Metal-Organic Framework Ecosystem. Nat. Commun. 2020, 11 (1). https://doi.org/10.1038/s41467-020-17755-8.
  2. Lifang Liu, Shiwen Du, Xiangyang Guo, Yejun Xiao, Zixi Yin, Nengcong Yang, Yunfeng Bao, Xunjin Zhu, Shengye Jin, Zhaochi Feng, and Fuxiang Zhang*Water-Stable Nickel Metal–Organic Framework Nanobelts for Cocatalyst-Free Photocatalytic Water Splitting to Produce Hydrogen, J. Am. Chem. Soc. 2022, 144, 6, 2747–2754, https://doi.org/10.1021/jacs.1c12179.
  3. Cadiau, A.; Kolobov, N.; Srinivasan, S.; Goesten, M. G.; Haspel, H.; Bavykina, A. V.; Tchalala, M. R.; Maity, P.; Goryachev, A.; Poryvaev, A. S.; Eddaoudi, M.; Fedin, M. V.; Mohammed, O. F.; Gascon, J. A Titanium Metal–Organic Framework with Visible-Light-Responsive Photocatalytic Activity. Angew. Chemie - Int. Ed. 2020, 59 (32), 13468–13472. https://doi.org/10.1002/anie.202000158.
  4. Wang, Y. C.; Liu, X. Y.; Wang, X. X.; Cao, M. S. Metal-Organic Frameworks Based Photocatalysts: Architecture Strategies for Efficient Solar Energy Conversion. Chemical Engineering Journal. Elsevier B.V. September 1, 2021. https://doi.org/10.1016/j.cej.2021.129459.
  5. Swetha, S.; Janani, B.; Khan, S. S. A Critical Review on the Development of Metal-Organic Frameworks for Boosting Photocatalysis in the Fields of Energy and Environment. Journal of Cleaner Production. Elsevier January 20, 2022, p 130164. https://doi.org/10.1016/j.jclepro.2021.130164.
  6. Chen, S.; Hai, G.; Gao, H.; Chen, X.; Li, A.; Zhang, X.; Dong, W. Modulation of the Charge Transfer Behavior of Ni(II)-Doped NH2-MIL-125(Ti): Regulation of Ni Ions Content and Enhanced Photocatalytic CO2 Reduction Performance. Chem. Eng. J. 2021, 406. https://doi.org/10.1016/j.cej.2020.126886.
  7. Zhen, W.; Gao, F.; Tian, B.; Ding, P.; Deng, Y.; Li, Z.; Gao, H.; Lu, G. Enhancing Activity for Carbon Dioxide Methanation by Encapsulating (1 1 1) Facet Ni Particle in Metal–Organic Frameworks at Low Temperature. J. Catal. 2017, 348, 200–211. https://doi.org/10.1016/j.jcat.2017.02.031.
  8. Kapelewski, M. T.; Runcevski, T.; Tarver, J. D.; Jiang, H. Z. H.; Hurst, K. E.; Parilla, P. A.; Ayala, A.; Gennett, T.; Fitzgerald, S. A.; Brown, C. M.; Long, J. R. Record High Hydrogen Storage Capacity in the Metal-Organic Framework Ni2(m-Dobdc) at Near-Ambient Temperatures. Chem. Mater. 2018, 30 (22), 8179–8189. https://doi.org/10.1021/acs.chemmater.8b03276.
  9. Mason, J. A.; Veenstra, M.; Long, J. R. Evaluating Metal-Organic Frameworks for Natural Gas Storage. Chemical Science. The Royal Society of Chemistry November 26, 2014, pp 32–51. https://doi.org/10.1039/c3sc52633j.
  10. Mason, J. A.; Oktawiec, J.; Taylor, M. K.; Hudson, M. R.; Rodriguez, J.; Bachman, J. E.; Gonzalez, M. I.; Cervellino, A.; Guagliardi, A.; Brown, C. M.; Llewellyn, P. L.; Masciocchi, N.; Long, J. R. Methane Storage in Flexible Metal-Organic Frameworks with Intrinsic Thermal Management. Nature 2015, 527 (7578), 357–361. https://doi.org/10.1038/nature15732.
  11. Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A. W.; Imaz, I.; Maspoch, D.; Hill, M. R. New Synthetic Routes towards MOF Production at Scale. Chemical Society Reviews. 2017, pp 3453–3480. https://doi.org/10.1039/c7cs00109f.
  12. Das, A. K.; Vemuri, R. S.; Kutnyakov, I.; McGrail, B. P.; Motkuri, R. K. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance. Sci. Rep. 2016, 6. https://doi.org/10.1038/srep28050.
  13. Cliffe, M. J.; Mottillo, C.; Stein, R. S.; Bucar, D. K.; Frišcic, T. Accelerated Aging: A Low Energy, Solvent-Free Alternative to Solvothermal and Mechanochemical Synthesis of Metal-Organic Materials. Chem. Sci. 2012, 3 (8), 2495–2500. https://doi.org/10.1039/c2sc20344h.
  14. Zhang, R.; Tao, C. A.; Chen, R.; Wu, L.; Zou, X.; Wang, J. Ultrafast Synthesis of Ni-MOF in One Minute by Ball Milling. Nanomaterials 2018, 8 (12). https://doi.org/10.3390/NANO8121067.
  15. Didriksen, T.; Spjelkavik, A. I.; Blom, R. Continuous Synthesis of the Metal-Organic Framework Cpo-27-Ni from Aqueous Solutions. J. Flow Chem. 2017, 7 (1), 13–17. https://doi.org/10.1556/1846.2016.00040.
  16. Sánchez-Sánchez, M.; Getachew, N.; Díaz, K.; Díaz-García, M.; Chebude, Y.; Díaz, I. Synthesis of Metal-Organic Frameworks in Water at Room Temperature: Salts as Linker Sources. Green Chem. 2015, 17 (3), 1500–1509. https://doi.org/10.1039/c4gc01861c.
  17. Severino, M. I.; Gkaniatsou, E.; Nouar, F.; Pinto, M. L.; Serre, C. MOF’s Industrialization: A Complete Assessment of Production Costs. Faraday Discuss. 2021, 231 (0), 326–341. https://doi.org/10.1039/d1fd00018g.

Read the article online at: https://www.hydrocarbonengineering.com/refining/05082022/mofs-for-the-energy-transition--references/

You might also like

 
 

Embed article link: (copy the HTML code below):


 

This article has been tagged under the following:

Downstream news